Spectrum of the quadratic eigenparameter dependent discrete Dirac equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic eigenparameter-dependent quantum difference equations

The main aim of this paper is to construct quantum extension of the discrete Sturm–Liouville equation consisting of second-order difference equation and boundary conditions that depend on a quadratic eigenvalue parameter. We consider a boundary value problem (BVP) consisting of a second-order quantum difference equation and boundary conditions that depend on the quadratic eigenvalue parameter. ...

متن کامل

On the Spectrum of Eigenparameter-Dependent Quantum Difference Equations

We consider a boundary value problem (BVP) consisting of a second-order quantum difference equation and boundary conditions depending on an eigenvalue parameter. Discussing the point spectrum and using the uniqueness theorem of analytic functions, we present a condition that guarantees that this BVP has a finite number of eigenvalues and spectral singularities with finite multiplicities.

متن کامل

Discrete Spectrum of Electromagnetic Dirac Operators

We consider the Dirac operators with electromagnetic fields on 2-dimensional Euclidean space. We offer the sufficient conditions for electromagnetic fields that the associated Dirac operator has only discrete spectrum.

متن کامل

Jost Solution and the Spectrum of the Discrete Dirac Systems

Elgiz Bairamov, Yelda Aygar, and Murat Olgun Department of Mathematics, Ankara University, Tandoğan, 06100 Ankara, Turkey Correspondence should be addressed to Elgiz Bairamov, [email protected] Received 14 September 2010; Accepted 10 November 2010 Academic Editor: Raul F. Manasevich Copyright q 2010 Elgiz Bairamov et al. This is an open access article distributed under the Creative...

متن کامل

Eigenparameter Dependent Inverse Sturm-Liouville Problems

Uniqueness of and numerical techniques for the inverse Sturm-Liouville problem with eigenparameter dependent boundary conditions will be discussed. We will use a Gel’fand-Levitan technique to show that the potential q in u00 þ qu 1⁄4 u, 0 < x < 1 uð0Þ 1⁄4 0, ða þ bÞuð1Þ 1⁄4 ðc þ d Þu0ð1Þ can be uniquely determined using spectral data. In the presence of finite spectral data, q can be reconstruc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2014

ISSN: 1687-1847

DOI: 10.1186/1687-1847-2014-148